Freight & Logistics Services
Ghost kitchen delivery drivers have overrun an Echo Park neighborhood, say frustrated residents
As soon as Echo Park Eats opened on the corner of Sunset Boulevard and Douglas Street in the fall of 2023, Sandy Romero said her neighborhood became overrun with delivery drivers. "The first day that they opened business it was chaotic, unorganized and it's just such a nuisance now," she said. Echo Park Eats is a ghost kitchen, a meal preparation hub for app-based delivery orders. It rents its kitchens to 26 different food vendors. The facility is part of CloudKitchens, led by Travis Kalanick, co-founder of Uber Technologies, which has kitchen locations across the nation including 11 in Los Angeles County.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer
Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, Jing Tang
Recently, Transformer has become a prevailing deep architecture for solving vehicle routing problems (VRPs). However, it is less effective in learning improvement models for VRP because its positional encoding (PE) method is not suitable in representing VRP solutions. This paper presents a novel Dual-Aspect Collaborative Transformer (DACT) to learn embeddings for the node and positional features separately, instead of fusing them together as done in existing ones, so as to avoid potential noises and incompatible correlations. Moreover, the positional features are embedded through a novel cyclic positional encoding (CPE) method to allow Transformer to effectively capture the circularity and symmetry of VRP solutions (i.e., cyclic sequences). We train DACT using Proximal Policy Optimization and design a curriculum learning strategy for better sample efficiency. We apply DACT to solve the traveling salesman problem (TSP) and capacitated vehicle routing problem (CVRP). Results show that our DACT outperforms existing Transformer based improvement models, and exhibits much better generalization performance across different problem sizes on synthetic and benchmark instances, respectively.
POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images - Supplementary Material - David Hurych 1
The results presented in the upper part of Tab. 2 demonstrate the effectiveness of these changes. Specifically, replacing'manmade' with'building' improves the IoU for this category from 17.4 to 45.1, and using'person' instead of'pedestrian' increases the IoU from 1.3 to 14.6 for the respective class.
VastTrack: Vast Category Visual Object Tracking
In this paper, we propose a novel benchmark, named VastTrack, aiming to facilitate the development of general visual tracking via encompassing abundant classes and videos. VastTrack consists of a few attractive properties: (1) Vast Object Category. In particular, it covers targets from 2,115 categories, significantly surpassing object classes of existing popular benchmarks (e.g., GOT-10k with 563 classes and LaSOT with 70 categories). Through providing such vast object classes, we expect to learn more general object tracking.
Benchmarking Robustness to Adversarial Image Obfuscations
Automated content filtering and moderation is an important tool that allows online platforms to build striving user communities that facilitate cooperation and prevent abuse. Unfortunately, resourceful actors try to bypass automated filters in a bid to post content that violate platform policies and codes of conduct. To reach this goal, these malicious actors may obfuscate policy violating images (e.g.
OFCOURSE: A Multi-Agent Reinforcement Learning Environment for Order Fulfillment
The dramatic growth of global e-commerce has led to a surge in demand for efficient and cost-effective order fulfillment which can increase customers' service levels and sellers' competitiveness. However, managing order fulfillment is challenging due to a series of interdependent online sequential decision-making problems. To clear this hurdle, rather than solving the problems separately as attempted in some recent researches, this paper proposes a method based on multi-agent reinforcement learning to integratively solve the series of interconnected problems, encompassing order handling, packing and pickup, storage, order consolidation, and last-mile delivery. In particular, we model the integrated problem as a Markov game, wherein a team of agents learns a joint policy via interacting with a simulated environment. Since no simulated environment supporting the complete order fulfillment problem exists, we devise Order Fulfillment COoperative mUlti-agent Reinforcement learning Scalable Environment (OFCOURSE) in the OpenAI Gym style, which allows reproduction and re-utilization to build customized applications. By constructing the fulfillment system in OFCOURSE, we optimize a joint policy that solves the integrated problem, facilitating sequential order-wise operations across all fulfillment units and minimizing the total cost of fulfilling all orders within the promised time. With OFCOURSE, we also demonstrate that the joint policy learned by multi-agent reinforcement learning outperforms the combination of locally optimal policies.
Learning to Handle Complex Constraints for Vehicle Routing Problems
Vehicle Routing Problems (VRPs) can model many real-world scenarios and often involve complex constraints. While recent neural methods excel in constructing solutions based on feasibility masking, they struggle with handling complex constraints, especially when obtaining the masking itself is NP-hard. In this paper, we propose a novel Proactive Infeasibility Prevention (PIP) framework to advance the capabilities of neural methods towards more complex VRPs. Our PIP integrates the Lagrangian multiplier as a basis to enhance constraint awareness and introduces preventative infeasibility masking to proactively steer the solution construction process. Moreover, we present PIP-D, which employs an auxiliary decoder and two adaptive strategies to learn and predict these tailored masks, potentially enhancing performance while significantly reducing computational costs during training. To verify our PIP designs, we conduct extensive experiments on the highly challenging Traveling Salesman Problem with Time Window (TSPTW), and TSP with Draft Limit (TSPDL) variants under different constraint hardness levels. Notably, our PIP is generic to boost many neural methods, and exhibits both a significant reduction in infeasible rate and a substantial improvement in solution quality.